PHYSICAL REVIEW E VOLUME 62, NUMBER 4 OCTOBER 2000

Effect of external force on the kinetics of diffusion-controlled escaping
from a one-dimensional potential well
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The kinetics of diffusion-controlled escapifigCE) from the one-dimensional potential well in the presence
of external force(both static and time dependgris analyzed in detail. It is shown that for static force the
simple exponential kineticévith the rate corresponding to the quasistatic diffusion over the baisesb-
served only in the limit of a strong force. For weak forces the nonexponential contribution to the DCE kinetics
becomes significant. The general expression for the DCE kinetics in the presence of oscillating or fluctuating
force is derived. With the use of this expression simple analytical formulas for the kinetics are obtained in the
limits of slowly and fast oscillating or fluctuating force.

PACS numbe(s): 82.20.Db, 82.20.Mj, 61.20.Lc

[. INTRODUCTION the problem has attracted the attention of theorists

[15,17,18, though the problem is still far from its complete

Diffusion-controlled escapingDCE) from a potential ~ solution.

well is the important stage of a number of chemical and It is also worth noting another problem closely related to
physical processes in liquide—3] and solids[3,4] which  that of the correct treatment of the time-dependent barrier
determines kinetics of these processes. In principle, DCE cafentioned above. The problem is in the correct description
be considered as a particular type of activated rate process fif DCE kinetics for relatively weak force that leads to a wide
which, however, the final state is delocalized in the spac&nough barrier. In this limit the substantial deviation from
outside the well. Majority of works cited in Refi2,3] dis- ;lmple exponentl_al kinetics is expegted even for the barrier
cuss three-dimensioné8D) processes. independent of time. In particular, in the absence of force

In reality, however, DCE is very important in 1D pro- DCE kinetics is known to be strongly nonexponential

cesses as well. The important example is photoelectric caL—lg’zq' This nonexponential kinetics evidently persists in

rier generation in 1D polymer semiconducté®. A similar the presence of weak force, but at intermediate tirfafs

bgll f behavi F; {1 i ted elect o 1D course at very long times it is exponentialhis effect to-
problem of behavior of photogenerated electrons in Congether with that of the time-dependent barrier leads to the
ductors is also discussed in RE). Both these processes are

X <= very complicated 1D DCE kinetics in general.
essentially controlled by DCE from the Coulomb potential.  The kinetics of 1D DCE is analyzed in a number of ar-

Recently it has been found that 1D DCE plays the impor+jcjes [19-21. The exact expression for kinetics of DCE
tant role of kink-antikink nucleation in the sine-Gordon fom highly localized well in the absence of foréthe pa-
chain, affecting the activation energy of the nucleation ratgameter under consideration was the time-dependent popula-
[7]. The kink-antikink interaction is known to be of the shapetjon of the potential wejlwas first obtained in Ref19]. It
of the short range potential weflB], and the effect of this was shown later that for localized and fairly deep wells the
well shows itself considerably in kink-antikink quasiequilib- exact DCE kinetics can be reproduced in the simple model of
rium properties. The effect of the external force on nucle-two kinetically coupled states inside and outside the well
ation (i.e., on DCH has also recently been discus$@iilbut  [20]. This two-state mode[TSM) is valid in the limit of fast
only quasistatic propertiegates and yieldsin the presence equilibration between the well and close vicinity around the
of a static force have been considered. well (see below[20]. TSM allows one to simplify the analy-

It is clear that the external force strongly affects the DCEsis of the problem significantly.
kinetics[1—3]. In general the theoretical description of this  In this work within TSM we consider the kinetics of DCE
effect is rather difficult. In what follows we consider the from 1D potential well in the presence of external force.
simplest 1D DCE. To a first approximation 1D DCE in the Both cases of static and time-dependent forces are discussed.
presence of force can be treated as a diffusive passing ovér large variety of different types of the DCE Kkinetics are
the cusp-shaped barrier which implies the exponential DCEound depending on the relation between the well depth and
kinetics. The quasistatic expression for rate of this process i®rce strength.
well known[10-14], but it is applicable only for fairly sharp
barriers.

However, the kinetics of passing over the barrier becomes
fairly sophisticated in the case of the barrier of time- The process under study is diffusion-controlled escaping
dependent(oscillating or fluctuating height and/or shape of particles from the 1D potential well(x) (shown in Fig.
[15]. An active discussion of this problem is inspired by thel) in the presence of a fairly weak external forigét) that
discovered “resonant activation” in passing over the a fluc-does not change the activation energy but significantly af-
tuating barrief16]. Very nontrivial mathematical aspects of fects the diffusive motion outside the well. Note that hereaf-

II. FORMULATION OF THE PROBLEM
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@) FIG. 2. The singular points of the Green’s functiGfx,x’|E)
of Eq. (2.2). Encircled areE;-pole and the branching point &
=0 which mainly determine the kinetics of DCE from the deep
well.

=aE/D<1 [notice that the behavior gf(x|t) att> 7, is

(b) determined by that o%(x|E) just in the region oft corre-
sponding to smalk].

To clarify the mathematical aspects of the rigorous
method and TSM it is worth adding some comments. The
rigorous method is based on the reduction of &41) to the

(c) Schroedinger-type one

[(E/D+v)—V?]o=D e"?p,, (2.2

| where o (x,E)=p(x,E)exfu(x)/2] and v(x)=%(du/dx)?
. X —1d?u/dx?, and the solution of this equation in the slow
b collision limit [22] which is defined by the inequality
<1. Equation(2.2) describes the resonance scattering of a
particle by the potentiad (x) of the shape of the well, sepa-
rated from the continuum by the high barr{@0]. The sin-
gular points of the Green’s functioB(x,x’|E)=(x|[(E/D
+v)—V2]7Yx") of Eq. (2.2 [coinciding with those of the
ter all parameters of energy dimensionality will be expressedreen’s function of Eq(2.1)] are shown in Fig. 2. These are
in kgT units, i.e., we will takekgT=1. In this work we the poles aE<0 and the branching point &=0 [corre-
consider forces of different signs and both symmetric andponding toJE behavior ofG(x,x’|E) at smallE]. In the
asymmetric(with high barrier atx— —) potential wells limit of deep well the first pole(closest toE=0) is well
[see Figs. (B-1(c)]. The potential well is assumed to be separated from other$E,|~ 7, *<|E;|~ 7 * (j=2). The
deep enough: the activation energy=—u(x,)>1. The poles atE; (j=2) describe the population relaxation within
DCE kinetics is controlled by the distribution functipix|t) ~ the well while the pole aE; and the branching poirithey

FIG. 1. The schematic picture of the potential we{k) in the
presence of the external forde (a) symmetric wellu(x), (b)
asymmetric wellu(x) and repulsive force, an@) asymmetric well
u(x) and attractive force.

satisfying the Smoluchowski equati¢8E) are encircled in Fig. Pcontrol the DCE kinetics at>7, . In
the lowest order if<1 (~¢) E; poles do not influence the
'p= DV[Vp+(Vu)p—F(t)p], (2.1 kinetics. The effect of these poles, i.e., the effect of popula-

tion relaxation in the well on DCE kinetics, is described by

whereV=4/9x, D is the diffusion coefficient, ané(t) is  higher orders of expansions i

the external force which is specified below. The function Analysis showsg[21] that TSM absolutely correctly de-
p(x,t) (2.1) satisfies the boundary conditigs(x— =+ o,t) scribes the DCE kinetics obtained rigorously in the lowest
—0 and the initial conditionpy(x) = p(x,0)= 8(Xx—X;) with order in{<1 when only theE; pole and the branching point
X=X, corresponding to the creation of particles near theare taken into account. In R4R1] this fact is demonstrated
bottom of the well. and discussed in detail in the caBe=0. From a physical
point of view this means that TSM correctly treats the pro-
cess of reencounters with the well accompanied by subse-
quent quasistationary capture within and escaping from the
In general, Eq(2.1) cannot be solved analytically. How- \ygl|.

A. General comments

ever, at times longer than the time, of equilibration within The presence oftime independentF leads to the modi-
the well the solution can be found in a simple analytical formfication of the “potential” v(x) in Eq. (2.2): v(X)=vg(X)
[19]. This time is defined as,=a? D, wherea is the char- =1(du/dx—F)?—1d?u/dx?, i.e., in this case the DCE ki-

acteristic size of the well that can be estimated as the diSnetiCS is characterized by the additional “frequency” param-
tance between points at whick{x)=—1. It is important to  eterE.=DF? [the effect of time dependefi(t) is analyzed
note that in the considered limit of deep well the time do-in Secs. IV and V. Following step by step the analysis of the
maint> 7, determines the most interesting specific featuregigorous method and TSM presented in Réf9—21] one

of the DCE kinetics whose characteristic time &  can easily come to the conclusion that in the lirfg
~7, expl,)>7 [20,21. The solution is obtained by the ex- <E; (j=23,...)(0or {r=a\Er/D=Fa<1) both of them
pansion of the Laplace transform B(x|E) are again equivalent to each other in the lowest ordef in
= [odtexp(—Etp(xt) in the small parametez=Er, and{g. The effect of the forc& in this limit manifests only
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in the modification of analytical properties &f(x,x'|E) in  term w,n in the first of Egs.(2.3). The reaction can be
the region of theE; pole and the branching poifthis mani-  treated as a diffusive passing over reactive barrier at small
festation is analyzed belogwThe condition{r<1 means X<X, near the bottom of the well.

also that the characteristic timg-=(DF?)~! of passing In the case of time-independe(statio force F Egs.(2.3)
over the barrier of the potential(x) — Fx satisfies the rela- can be solved by the Laplace transformation in time. Solu-
tion 7> 7, . In addition, this condition implies the relative tion leads to the following formula for the well population
weakness of the external force which does not change the(t):

shape of the well.

In the limit {¢,{<<1 both the rigorous method and TSM 1 [i=+0 et
predict that the specific features of stochastic motion outside n(t)= 2m 7ix+0dEm'
the well are represented in the Green’s funct®(x,x’|E)
by the termy; *(x,E)dy(x,E)/dX|x—x,, Wherey(x,E) IS n this formula the functionv(e) is directly related to the
the solution of Eq(2.2) describing free motion in this region Green’s function of the operator which controls diffusion
[19]. Thus in both approaches the only modification ofoutside the well
G(x,x'|E) for F#0 as compared to that fof=0 [19-2]

(2.6

reduces to the replacement ¢f(x,E) by the solution de- g(X,x|E)=(X|[E-D(V2=FV)] 1x): (2.7
scribing the diffusion in the presence of forEe Naturally
for {r,{<1 these approaches predict the same expression V(E)=1/g(0,0E). (2.9
for the DCE kinetics.
The equivalence of the rigorous methi@a the linear in{ In addition to the time dependence of the well population

and {r approximation and TSM enables us to estimate the n(t) the steady state characteristics such as the total yield of
accuracy of the TSM. It is determined by the correctionescapingyY, and reactiony,=1-Y, are of certain interest
terms which are proportional to the high powers{ond  for analysis of the problem and possible applications. They
{r (~{™and{F with m=2) which can be estimated in the can be easily represented in terms of the life time in the well:
rigorous method. They describe the interference between the
population relaxation inside and outside the well. o

In what follows we will use TSM for analysis the DCE Twzf dtn(t), 2.9
kinetics. This model is chosen instead of the rigorous method 0
only for the sake of the simplicity of intermediate calcula-
tions and brevity of presentation. Ye=1-Y=1-w7,. (210

Formulas(2.9) and(2.10 are applicable both for static and

time- dependent forces. In the case of st&titiowever, the
TSM treats DCE as a transition from the state within thesimple expression for,, can be derived using E@2.6):

well, whose population isi(t), to the state outside the well
described by the distribution functioo(x,t). The kinetic Tw= 1 W, +KV(0)]. (2.11
equations fon(t) andc(x,t) are written as

B. Two-state model

) Formulas (2.6)—(2.8) show that for static forceF the

n=K.c(0t)—(K_+wy)n, (238 problem of calculating the DCE kineticg(t) reduces to the
] evaluation of the Green’s functioi2.7) and subsequent cal-
c=DV[V-F()]c—(K,c—K_n)&(x). (2.3b culation of the inverse Laplace transfol@.6). The case of

) . ] force depending on time is much more complicated. It will
The terms proportional t& . describe the abovementioned pe analyzed in detail in Secs. IV and V.

kinetic coupling between the state within the well, located at
x=Xp=0, and the state outside the well. The considered
limit 7,/7,<1 the transition rate&. satisfy the relations

[21] Prior to discussion of the DCE kinetics we need to note
that in the case of asymmetric well the effect of the external
Ki—co and K /K_=Ke=1/Z,, (24 force on kinetics is essentially different f&r>0 [Fig. 1(b)]
and F <0 [Fig. 1(c)]. The repulsive forceR>0) enhances
the escape of particles from the well and subsequent diffu-
sion apart from the well, whereas the attractive forée (
n(0)=1 and c(x,0)=0. (2.5 <0) prevents diffusion of particles to infinity giving rise to
the formation of the equilibrium state in the potentiglx)
As to the boundary conditions far(x,t), it is different for  +|F|x [see Fig. 1c)]. Kinetics of depopulation of the well
symmetric[Fig. 1(@)] and symmetridFigs. 1b),1(c)] well: is, naturally, different in these two cases and in what follows
for symmetric well these conditions are given byx— we will discuss them separately though the formal math-
+o)=0, while for asymmetric one they are written as ematical expressions far(t) are close in both cases. We
dcl9x—Fcly—o=0 andc(x—«)=0. start our discussion of the DCE kinetics with the simplest
In Egs. (2.3) we also took into account the first order case of the absence of external forde=0) investigated
reaction in the well(with the ratew,) represented by the earlier in Ref.[20].

Ill. STATIC EXTERNAL FORCE

whereZ,,= [, dxe "™ is the partition function for the well.
Equationg2.3) should be solved with the initial condition
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A. The absence of external force

For F=0 one getsgsﬁx,xi|E)=(2kD)‘1e‘k‘X‘xi| and
ga(X,X|E) = (2kD) ~ [ e Kx~xil 4 e=kx*x)]  where k(E)
=E/D, for symmetric(s) and asymmetri¢a) well, respec-
tively. Correspondingly, according to the definitigh8), for
symmetric and asymmetric wells

V,(E)=Dp,k(E) (v=s,a), 3.9
whereps=2, p,=1, andk(E)= JE/D.

Substitution of the expressidB.1) into Eq.(2.6) leads to
the following formula for the DCE kinetica,(t) (v=s,a)

[20]:

1 (i=»+0 duexpur)

27 ) —imrou+a®\u+1

20 n-20@ 7

-2

where r=w,t, a®=p K D/w,, 22 =21a0+i\1-%(a9?
and(b(z)z[l—erf(z)]ezz. The parameterz‘i are the roots
of equationz?— a%z+1=0.

Specific features of the DCE kineticrg(t) (3.2 are ana-
lyzed in detail in Refs[20,21. In general this kinetics is
nonexponential and, in particular, at long tintesliw, it is
of inverse power typen%(t)~1/%2 In the limit of small

n%(t)=

, 3.2

a’<1, however, more detailed analysis of the kinetics is
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whereS,=sgnfwv,) and
(3.9

7=|w,|t
is the dimensionless time in which the characteristic rate
w, (v=s,a) is expressed in terms of the rate parameters of
the model
wo=DF?/4, (3.6)

W, , and w,=DF/Z,:

Ws=Wg—W, and Wy=Wgy— W, —Wy/2. 3.7
In addition, in formula(3.4) there are two dimensionless
parameters

60:W0/|WV| and a,= pv(We/Z VW0|WV|) (38)
(with ps=2 andp,=1) that essentially determine the spe-
cific features ofn,(t).

The behavior oh,(t) substantially depends on the sign of
w,,. The fact is that in the case of positivwg, there exists the
pole of the integrand in Ed3.4) in the interval < e< ¢, (at
€=z, wherez, is the positive root of equation®+ o,z
—1=0), which gives rise to the contribution tg, exponen-
tially depending on time. For negatiwe,, however, this
pole is absent and, the DCE kinetics is nonexponential in
general.

After some algebraic manipulations the expresdi®d)
can be represented in the following form:

ossible. . a €T a—€oT
P The analysis show§20,21] that at small timesr=w,t n()=noe =+, (a,, 7). 39
<In(1/a®) the kinetics is exponentialn(t)=exp(—wt), wherer=|w,|t
while at large timea—>|n(1/a(y’) it is of inverse power type, n
n%(t)=a%[2m(wt)%?]. In the absence of reactiorw( 1212
—0), however the kinetics is completely nonexponential: &=~ (Vltaa,—za,)% (3.10
no(t)=®(\/est), wheree;=DKZ. This formula also pre-
dicts inverse power type behavior oﬂ(t) at larget but no=|l1- @y o(w,) (3.11)
different from that mentioned abova?(t)=1/\/me;t. 0 Va+a? " '
It is seen that even in the absence of the external force a
large variety of different types of the DCE kinetics occur. and
The effect of a force clearly leads to some additional inter-
esting specific features of this kinetics. 2 [ v2exp(—v27)
W(an)=—] dv—r
B. The presence of external force Tl (vTHS) T aty
1. General formulas _ 2, ®(z,\1)~2_P(z_\7) (3.12

In the caseF#0 the Green's function&,(x,x;|E) can
easily be obtained analytically both for symmetrie=(s)
and asymmetrici=a) wells. Substitution of these functions
into Eq. (2.8 gives

V4(E)=2Dx(E) and V,(E)=D[1F+x(E)] (3.3

with »(E)=+/(E+3DF?)/D. Thus the DCE kinetics
n,(t) (v=s,a) is represented as

i=teg deexper)

= _——@ €07 _—
(=5 e j_imﬂoe_sﬁay o G

z,+S,z_

In Egs. (3.9—(3.12 6(w) is the Heaviside step function,
S,=sgnWw,), z,=VS,tia’+3a, z =S/(VS,+3:a?

—1a), and

®(2)=[1—-erf(2)]e”. (3.13

In its general structure the expressi@12 is similar to
formula (3.2), however, the presence of the additional term
S,=sgniw,) in Eqg. (3.12 leads to a very large variety of
different analytical properties of the DCE kinetics in the case
F+#0 discussed below.
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2. Analysis of different limits

A. I. SHUSHIN

PRE 62

(a) Forw,#0 at short times no simple approximations for

Prior to the discussion of various limits it is worth making the nonexponential function(«, 7) occur, and one needs to

some general comments. Formy&9) predicts thain,(0)
=ng+I,(«,,0)=1 in accordance with the initial condition
(2.5. The first termng is non-zero only forw,>0. This
means that atv,>0 the analytical properties of the function
I ,(a,7) strongly differ from those awv,<0. In particular,
for w,>0 | ,(«,0) depends ona and smaller than 1,
whereas for w,<0 1,(«,0)=1. In addition, at w,
>0 |,(a,7) is the nonexponential function af for all 7,
while atw,<0 it is exponential atr<<7.=In(1/«) and non-
exponential at-> 7, in agreement with results of Sec. Il A.

a. Strong repulsive external force>F0

The limit of strong repulsive forc&>0 is defined by

(3.19

In this limit the first exponential term in formulé3.9) is
dominating:ng=1, and the ratevy of the (exponential well
depopulation is a sum of the reaction and DCE rates

(3.19

w,>0 and wg>Wwg, W, .

Wy=€,W, =W, +Wg

use the general expressi@12. At long timesr, however,
it is of inverse power typé (a,7)=al/(2\77%?), so that

(3.19

(b) At w,—0 the expression fom,(t) simplifies since in
this case ny=0 and |, (a,7)=P(ayr)=[1
—erf(ay/7)]e**". Thus for very smallv,

n,(t)=[1—erf(y,\wot)Jexd — (1— y2)wqt],

n,(t)~t 2exp —wqt).

(3.20

where y,= a,VW, /wy=p,(W/2wp). Formula (3.20 pre-
dicts the following long time behavior of,(t): n,(t)

~t™Y2ex — (1— yY)Wet].
c. Weak repulsive external forceF0
In the case of weak force, when
w,<0,

(3.21)

the first exponential term in E@3.9) is absent and the DCE

both for symmetric and asymmetric wells. The expressiorkinetics is determined by the second terat (e, , 7). It is

for DCE ratew, (3.6), naturally, coincides with the rate of

easily seen that at,<0 the behavior of ,(a,7) is similar

diffusive passing over the cusp-shaped barrier when the forc® that of Ug(t)_ with w,#0 [see Eq(3.2)] which describes
in the state of reagents is much larger than that in the state ¢he DCE kinetics in the absence of external force. In particu-

productd 3,14]. The expressiof3.15 is actually the particu-
lar case of the general formula for the depopulation vaie
valid in the limit sharp barrier outside the well:

wy=w,+KgV,(0) (3.16
which can easily be seen from the expres<idi).

b. Repulsive forc¢F>0) of intermediate strength
This case corresponds to

(3.17

w,>0 and wo~Wg,W, .

lar, in the limit «,<1 there are two well distinguishable
stages of the DCE kinetics. At relatively short timest,
=|w,| tIn(1/a,) kinetics is exponential:

n,(t)=exg — (wo—w,)t]=exd — (w,; + we/2)t],
(3.22

while at longer timeg>t. kinetics is nonexponential:

n,(t)=(a,/2\m)(|w,|t) "¥2exp(—wot). (3.23

Note thatw,<0 means thatv, +w./2>w, and the decrease

(1) In general, at these conditions both terms in formulaof n,(t) becomes slower as timechanges front<t, to t

(3.9 are of comparable absolute value. However, siage
<w, andl,(«a,7) is the decreasing function af the long
time asymptotic behavior af,(t) is completely determined
by the first exponential term
n(t)~nge” "It for t>w 1w, ?. (3.18

Compared to the previous ca&®, however, the correspond-
ing pre-exponential factar,, given by Eq.(3.11), is smaller
than 1, and the DCE rate,|w,| [see Eq.(3.10] is lower

>t.. It is worth noting also that according to E(.22 at
t<t. the DCE rate equalw,/2 rather tharw, as in the case
of strong force[see EQ.(3.16]. Naturally, in the limitF
—0 the formulas(3.22 and (3.23 reduce to those corre-
sponding to the case of the absence of external f¢see
Sec. Il A).

d. Attractive external force €O

For F<0 the DCE kineticsn, is also described by the
general expressiof8.9). It is clear from this expression that
the change of sign does not change the DCE kinetics for

thanw,. The decrease of the absolute value of the DCE rat@ymmetric well. In the case of asymmetric well the DCE
€,|w,| with the decrease of the force strength results evikinetics for F<0 strongly differs from that foF >0. This
dently from the increase of the number of returning trajectostrong dependence results from the fact that in the expression
ries as the slop& of the cusp-shaped barrier near the well (3.7) for w, the sign of the ratev, depends on the sign &

becomes less steep.

(2) In the special case of relatively weak force, whep
>0 butw,<w,, the pre-exponential factar, is very small:
Ng<<1, ande,=¢€y. In this limit the initial stage of the DCE

and forF<0 the ratew,<0. The negative sign of/, leads
to some important specific features of the kinetigét).

(1) In the strong external field limit, whejw,|<w,, the
depopulation rate

kinetics is described by the second non-exponential term

~I,(a,,7) of the expressioni3.9).
In the casew,>0 butw,<w, the DCE kinetics has the
following specific features.

(3.29

i.e., the DCE rate is zero. This result is quite natural.

€.=W,,
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(2) In the absence of reactiow(=0) the first term in the Qj=(0+jwy) i and fjx=3(5+1x+ 5-1x)-
expression fon,(t) (3.9 is always independent of time, i.e., (4.5
the ratee,=0, no matter how strong the external force is.

The absolute value of this term Equations(4.4) should be solved with the boundary condi-
tions C(x— +)=0 andC(x—»)=0; dC/dx—FofC|y_
No=4wo/(|we| +4wo)=|F|Z,/(1+|F[Z,) (3.25 =0 for symmetric and asymmetric well, respectively.

) o ) ) - Solution of these equations in the liniR.4) yields
determines the statistical weight of the well in the equilib-

rium state in the potential(x) +|F|x. N(w)=G(w)N;, (4.6)
e. Escaping yield
The escaping and reaction yields defined by @dlO are  where

given by the universal formula

Glw)=[iQ(w)+w, +KV(w)] . 4.7
We
Yi=1-Y}= , 3.26 .
€ Towtwe ( 3 In the expression foG(w)
w N — 1/ .

W+ (WetWel)/2” . . .
with g(x,xi| @) =(x|[1Q(w) —D(VZ=Fof V)]~ !x)).
and do not provide any information on details of the DCE The Green's functio@(x’xi|w) and thus the matri¥X/(w)

kinetics discussed above. Moreover these relations can kgn be calculated analytically by the methods developed in
misinterpreted since they coincide with those predicted in thgref, [23]:

simple exponential model for escaping kinetics which, in re-

ality, is only observed in the limit of strong for¢&ee Egs. (/S(w)zzD;(w) and \”/a(w): D[%Foh- ;}(w)]
(3.15 and(3.249)]. (4.9
IV. OSCILLATING EXTERNAL FORCE with %(w) = \[iQ(w)+:DF2i2]/D, for symmetric(s) and

; T tricla) wells
In general the analysis of the DCE kinetics in the presenc@symme_ :
of time-dependent force is very complicated. For harmoni- The_ final formulas(_4.8)_ and (4'9). are s_wtable for th?
cally oscillating force, however, the problem can be reduce@n@lysis of the DCE kinetics,(t). It is obtained by substi-
to that for static force and thus solved by the method develtution of the vectoN,(w) into the relation(4.1).

oped above.
B. Limiting cases

A. General expressions In general, Eqs(4.1)—(4.9) enable one to calculate the
DCE kineticsn,(t) only numerically. However, the limits of
slow and fast force oscillations can easily be analyzed ana-
lytically.

In the case of harmonically oscillating forc&(t)
=F,cos(gt) one can find the functiona(t) and c(x,t),
satisfying Eqs(2.3), in terms of expansion in Floquet states
[24], vv_hich are usually applied in analyzing the dynamics of 1. Slowly oscillating force
periodically driven systemg25]

The limit of slow oscillations ofF(t) is defined by the

* o , inequalit
nt= >, Oodw Np(w)e ™ (@+meo)t (4.2 quatty

m=—w

We,DF3> 0. (4.10

_ . “0 —i(w+mog)t In this limit the DCE kinetics can most easily be analyzed for
c(x.t) m;@ 0 doCr(x,)e - 42 strong external forceBy>1/Z,, [see the second of inequali-
ties (3.14)]. In this case

Substituting these function in Eq&.3) one gets the matrix

equations for the vectors Go(w)=[i0+w,+w|f|]7%, (4.113
N(w)={Npy(w)} and C(x,w)={Cp(X,0)}: (4.3 Ga()=[iQ+w, + 3w (f+|f)]7 2 (4.11h
iON=K, C(0)— (K_+w,)N+N;, (443 In the expressiont.11) we=DF/Z,, and|f|= 2

It is easily seen that the kineticg,(t) obtained using the
i0C=DV(V—F,f)C—(K,C—K_N)&(x), (4.4p  matrix expression$4.11) can be equivalently calculated by
solution of simple kinetic equations valid in the strong force
in which C(0)=C(x=0,w), N;={1} is the vector of initial  limit:
population[see Eq.(2.5)] represented in the vector space of )
N, and the matrice§) andf are given by Ns=—[ W, +We|cog wot)|]ns (4.123
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= — [W, + We8(cos wgt)) N4, (4.12h the fast oscillating force resglts in a similar effect on DC_E

for both types of wells, but with the DCE rate for symmetric

where6(y) is the step function. The solutions of these equawell about two times larger than for the similar asymmetric
tions can be represented as follows: one (with the samez,,).

n(O=exp—[wit+ O+ O]} (v S’a)'(4_13 V. FLUCTUATING EXTERNAL FORCE
We will analyze the effect of fluctuating external force in
the Markovian approximatiof26] which enable one to sim-
Bo(1)=(We/ wg)Sin( wgt){2 60 cog wot)]— 1} plify the problem reducing it to solving the system of differ-
(4.148  ential equations usually called the stochastic Liouville equa-
tion [27]. Nevertheless, most of results obtained in this
da(t) =(We/wg)sin(wot) Ol cog wot)].  (4.14D  section are fairly general and independent of the applied ap-
proximation.

Here ¢ ,(t) are the bounded functions

The unbounded functions

Ps(1)=2,(1) = (2We/ wg)[ @], (4.15 A. Markovian approximation

In the Markovian approximation for force fluctuations the
two coupled equation$2.3) are replaced by two coupled
systems of equationsimilar to Eqgs.(4.4)] for the vectors
n(t)={n;(t)} andc(x,t)={c;(x,t)} whose components de-
WS =W, + 2w/ and Wa=w, +W, /7 (4.16 scnbe_the evolut_lon of the system in the statgs corre-

sponding to the different values of the force. In what follows,

where [x]=x—{x} is the integral part ofx and ¢
=(wot/m)+1/2, determine the decrease of/(t): at t
>1/w, the average well depopulation rate is given by

for symmetric and asymmetric well, respectively. for the sake of convenience we will also use bra and ket
notations for the vectora(t)=|n(t)) andc(x,t)=|c(x,t)).
2. Fast oscillating force These systems of equatiofsalled the stochastic Liouville

In the limit of fast oscillating force, when equation are written as

We,DF§<w0, (4.17) n=K_,c(0)—(K_+w,—W;)n, (5.19

in Eqs.(4.4) coupling between “eigenstateéj) of the ma- c=DV(V—E)c—W,c— (K, c—K_n)s(x). (5.1b

trix ), caused by the nondiagonal matixf, can be ne-

glected. In this case the main nonoscillating part of the DCE ~ i ) ) .

kinetics is determined by the inverse Fourier transformatioriere F is the matrix of forces diagonal in the bagig:

of the matrix element Fijr=F;6;;, and the matrixW; describes the transitions
between statef ) resulting in the fluctuations of force. The

éyoo(w)Z[iw+Wr+ P,DKexo(w)] 71, (4.18  solution of Egs.(5.1) satisfies the boundary conditioléx

—*x)=0 andc(x—)=0; dc/dx—Fc|,_o=0 for sym-

where p, (v=s,a) is defined in EQ.(3.8) and xy(w)  metric and asymmetric well, respectively.

- \/[i w+3DF3f200l/D, i.e., xo(w)=/(iw+ tDF3)/D. In Equationg5.1) should be solved with the initial condition
derivation of formula forxy(w) we took into account that
2=1/2, |e(x,0)=0 and |n(0))=]0), (5.2

After the evident change of integration path in the integral
of the inverse Fourier transformation we arrive at formulayhere|0) is the equilibrium eigenvector of the matri/; ,
(3.4) for the DCE kinetics in the presence of static force. A ANA
o . ie., W;|0)=(0|W;=0. Th torg0) and(0 b -
(1/2)F, [which is, actually,F (t) averaged over the oscil- .. 110) =(0|Wy e vector40) and(0| can be rep

resented in terms of expansion in the bagesand(j|, re-
lation periodF,= \/<F2(t)>], i.e., with the following param- spectively: P age (il
eters:

Wo=1DFZ, wo= %FZ T 0)=3 pi) and(0]=X (jl, (53

W

(4.19 o

where p;=(j|0) is the equilibrium probability to find the
system in the statg). Note that, in generaf,0|#|0)" be-
%ause the matrixV; is non-Hermitian. For convenience of
our further discussion let us also introduce the projection
operator on the equilibrium stat8):

The specific features of the kinetid8.4) have been dis-
cussed in detail in Sec. Ill. Here we only note that, accordin
to formulas(4.18 and (4.19, in the limit (4.17) both for
symmetric and asymmetric wells the DCE kinetics in the
presence of oscillating force reduces to that of &) cor-
responding to the symmetric well and static average force, A

but with different parametera: as=2a,. In other words, Po=10)(0. (5.9
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The DCE kineticsn,(t)=(0[n,(t)) for symmetric ¢*  where W5(j)=D|F;|/Z,, and Wg(j)=DF;6(F)/Z,. It is
=s) and asymmetrici=a) wells can be obtained by solu- clear that in general the quasistatic DCE kinetics predicted
tion of Egs.(5.1) by means of the Laplace transformation by Eq.(5.11) is strongly nonexponential.

which gives b. Relatively fast fluctuations
1 o This limit is defined by inequalityfW,||<||W;|. In this
|co N A —_— ~ J—
nv(t)=(0|nv(t))=2—wi£i +Oo|se*-f‘<o|GV(s)|o> case Ge=[s+W, +|We[]™' and Gy=[s+w, +3(W,

+|W,|)|0)] 7%, and therefore for both types of wells: sym-

metric (s) and asymmetrica), the DCE kinetics is exponen-
(v=s,a), (5.5 tal:

where ng(t) = expl — (W, +[Wel)t], (5.123

Cule)=[e Wt Wit KVi()] ™ (59 na(t)=exi —wit— (Wt [Wt].  (5.12b

with _
Hereafter we use the notatioh for the average of matrix
V. (2)=1/3,(0,0¢) (57) elements of any matriA
andg,(x,xi|e) =(x|[& +W;—D(V>~FV)] *|x;). The ma- A=(0|A|0)=>, piA| (5.13
i

trix V,(g) can be obtained analytically by the method pro-

posed in Ref[23] as in the case of oscillating force _ . R _ .
in which the probabilitieg; are defined in Eq(5.3.

V(e)=2Dx(e) and Vy(e)=D[:DF+x(e)] (69 2. Fast fluctuating force

in which x(w) = \/(8+Wf+ 1DE?)/D. In the opposite limit of fast force fluctuations, when
The formulas(5.4)—(5.8) enable one to analyze the spe- -,
cific features of the DCE kinetics in some limits quite easily. We, DF“<|[Wi, (5.14

the fluctuations are averaged out. This leads to the strong

B. Analysis of limits TP 2
simplification of formula forG, (v=s,a):

1. Slowly fluctuating force

The slow fluctuation limit is defined by G(e)=[e+W,+2p,DKexo(e)] Py,  (5.19
We,DF2s W, (5.9  whereps=2p,=2 andxy(¢)= /(e + :DF?)/D (remember

that F2=3p;F?).

— — 5. - iPiTj

whereF?=3p;F? is the average square of the force. Simi-  The expressior{5.15 shows that, similar to the case of
lar to the case of oscillating force here we will assume thafast oscillating force(see Sec. IVBY in the limit of fast
the external force is strong enoug{]@> 1/Z,,, so that the force fluctuations the DCE kinetics reduces to that for the
DCE kinetics is described by the fluctuating DCE rate. In(averagg static force and symmetric well no matter whether

this limit the original wellu(x) is symmetric or asymmetric. The only
difference between symmetric and asymmetric wells is in the
Vo(e)=|Wgl/Ke and Vu(e)= 2 (Wt |W|)/Ke amplitude factorpg , of the term~ s in formula for Gg ,.

(5.10  This means that in the fast fluctuation limit the specific fea-
tures of the DCE kinetics are the same as those for static

with W,=DF/z,, and |W,= W2 The expressions for force (Sec. 1.
G,(e) with V, (5.10 correspond to the simple first order
DCE kinetics but with fluctuating DCE ral/, . ) ) )
In general, the calculation of the DCE kinetics in the slow Here we will analyze the general expressions obtained
fluctuation limits requires some matrix operations. Here weAPove in the simple two-state model of Markovian fluctua-
will restrict ourselves to the discussion of limiting situations tions of the forceF. In this model the matrixV; is given by
a. Quasistatic fluctuations

3. Two-state model of force fluctuations

In the quasistatic limit, whefi\W,||>||W;|, one can ne- Wi =w;(E—[0)(0) =wq(E—Py), (5.19
glect the fluctuation matridV;. In this case the inverse .
Laplace transformatiof6.5) yields forn,(t): whereE is the unity matrix(0[=(1,1), and|0)=3(1,1)".
This definition means that the probabilitigg =p,=1/2.
nV(t):<O|exp(—\7vgt)|0)=z E exd —WZ(j)t], The force matrixt is taken in the simplest form
]

(5.1 Fijr=(—1)1"'Fs;/, (5.17
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so thatF=(0|F|0)=0. It is worth emphasizing the impor- VI. CONCLUSION
tant property of the matrik (5.17: F2=FgE. In this work we have thoroughly analyzed the specific
In the model(5.16), (5.17) features of the kinetics of diffusion-controlled escaping
. A . (DCE) from the 1D potential well in the presence of time-
x(e)=0s(e)E+[go(e)—qs(e)]Pg, (5.18 independentstatio, oscillating or fluctuating external force.

The force is assumed to be relatively weak: it significantly

whereq;= \/(s+wf+%DF§)/D andqgy= /(e +:DF3)/D. affects diffusion outside the well, but does not change the
Substitution of this relation into Eq5.6) gives after some activation energy. The cases of symmetric and asymmetric

matrix manipulations potential well are considergdee Fig. 1. Some general con-
clusions of this work concerning specific features of the DCE
(0|60)=1/X (5.193 kinetics in the fast and slow oscillation or fluctuation limits
S S .

are similar to those obtained in Ref4.7,18 (mainly corre-
sponding to the case of strong figldin our analysis special

(01G4|0) = 1M Xa+ 5 (WE/Xp) . (5.19b  attention has been paid to the weak field limit in which some
peculiarities of the kinetics are found.
Herew,=DF,/Z, and A large variety of types of the DCE kinetias,(t) for
. symmetric ¢=s) and asymmetric =a) potential wells
X,(g)=e+w +3p,DKelo(e), (520 has been found for static fields. The important parameter that
controls the change of kinetics is the ratie-wg/w, of the
Xi(g)=g+W,+Ww;+3DKcgy(e) (5.2)  escaping time W.=2Z,/(DF) and the characteristic time
1Mwo=1/(DF?) of diffusion over the cusp-shaped barrier of
(remember thaps=2 andp,=1). the potentialu(x) — Fx. For ¢<1, i.e., for strong fields, the

In general, formuld5.19 for (0|G,(£)|0) is rather com-  DCE kinetics is described by the first order equatiéhd 2.
plicated to apply for calculating the DCE kinetics with Eq. In the opposite limité>1 (weak field$ the kinetics is
(5.9), but it is quite suitable for analysis of some particular strongly nonexponential similar to the case of the absence of
cases. force[20,21.

(@) First, note that the two-state mod@l.16 predicts no  The effect of force oscillations and fluctuations on the
effect of the force fluctuations on DCE from the symmetric pcE kinetics is also analyzed. Simple analytical expressions
well, i.e., the DCE kinetics in this case is the same both fog . 10 functionsns ,(t) are obtained in the limits of slow

f|UCtl_JatII;g l_an_cti_ for static f_orces.l Itis 5%5'13/ seen frIcIJm aP-and fast oscillations and fluctuations of force. In both limits
proximate limiting expressiong.11) and(5.12), as well as the DCE kinetics is shown to be nonexponential, in general.

fro?&)gggfg;r?qrrr:;:ﬁg'v%,ZéGtﬁéssTrgﬁgegf?:;t cc))g(gc))}ce fluc- In particular, in the fast oscillations/fluctuation limit the ki-
tuations on kinetics is predicted by formula.19. The cor- netics of DCE from symmetnc and asymmetnc_ wells re-

o A duces to that corresponding to the case of static force and
responding inverse Laplace transform (@ G,(¢)|0) can ymmetric well.

hardly be obtained analytically in general. In the case ots The expressions for the DCE yield, are derived in the

relatively fast fluctuations, however, Wha’f'e:DFO/ Zu cases of static and fluctuating external force. The yield ap-
<wj, one can neglect-dependence oKy taking pears to be insensitive to the details of the DCE kinetics in
0 ) the presence of static force. In the case of fluctuating force it
Xe=X;=w, + Wi+ 3DKeq¢(0). (5.22  gives interesting information about the dependence of the
DCE kinetics on fluctuation correlation time.
In this limit the fluctuating force leads to the additional DCE  The DCE yieldY, in the presence of oscillating field can
with the rate Swe=(w3/X{), and the total DCE kinetics be represented in the form of matrix expressidf
n,(t) reduces to that for static force but with renormalized:NiTé(wzo)Ni, whereN, and G(w) are defined in Sec.

reaction rate as it is seen from E@S.5), (5.19, and(3.4. |y A The yield Y, gives some important information about

_(0) The two-state model(S.16 enables one to obtain yhe effect of oscillating force on the DCE kinetics. Unfortu-
simple expressions for the DCE yieWt [Eq. (2.10]inthe  pately in general, the evaluation Wt is possible only nu-
presence of fluctuating force. Remind that in the case Ofnerically.

symmetric well the two-state msosﬂe' predicts no effect of |, this article we restricted ourselves mainly to the gen-
fluctuations and the DEC yiel, is the same as for the grg| analysis of the developed method and consideration of

static repulsive forcé&=F,. For the asymmetric well the most interesting limits. This method, however, offers
some interesting possibilities of further investigations of the

Ya=1- Y= 1-W, [ W, + 3We+ 5 (Wa/X)] L. specific features of DCE kinetics.
(5.23 (1) The results of this work are very important for de-

scription of the kinetic properties of kink-antikink ensembles
This formula is valid for any values of parameters of the[7,9]. So far the effect of geminate DCE kinetics analyzed in
model. The effect of force fluctuations on the DCE yield isthis article on the kinetic characteristics of multiparticle sys-
described by the terms w, and~w? in the right hand side tems such as the correlation functions has not been studied
of Eq. (5.23. rigorously enough although this effect is expected to be
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fairly strong in the limit of strong interaction between par- rating two narrow wells(see also Ref[18]). Within this

ticles. model one can describe the effect of fluctuating activation
(2) Here we discussed only the influence of a weak forceenergy with the use of the abovementioned modification of

which does not change the escaping activation eneggy the rate constari _ .

Some effects of a stronger force, however, can also be inter- (4) It is of special interest to analyze the effects of non-

preted within the approach developed. In particular, one caadiabaticity on the stochastic processes. This problem is of

easily take into account the oscillations or fluctuations of thecertain importance for the theory of stochastic resonances

activation energy if they are not accompanied by the changg28]. The proposed method makes it possible to get some
of the shape of the potential at the dissociation threshold. Imew insight into the problem. For example, it enables one to

this case TSM is still applicable though one should assuméeat it in the simple model of coupled narrow wells.

that the rate of capture into the wedl, [see Eq.(2.4)] is
scalar value(i.e., K, is independent of timewhile K_

=K, Z, is the matrix in one of spaces described in Secs. |

and IV (representing the time dependéht). This approach

is very close to that considered in some other models which

The work on some of the problems described in this list is
currently in progress. The results of this work will be pre-
Vsented later in separate publications.
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