
PHYSICAL REVIEW E OCTOBER 2000VOLUME 62, NUMBER 4
Effect of external force on the kinetics of diffusion-controlled escaping
from a one-dimensional potential well

A. I. Shushin
Institute of Chemical Physics, Russian Academy of Sciences, GSP-1, Kosygin Straße 4, 117977 Moscow, Russia

~Received 2 November 1998; revised manuscript received 20 September 1999!

The kinetics of diffusion-controlled escaping~DCE! from the one-dimensional potential well in the presence
of external force~both static and time dependent! is analyzed in detail. It is shown that for static force the
simple exponential kinetics~with the rate corresponding to the quasistatic diffusion over the barrier! is ob-
served only in the limit of a strong force. For weak forces the nonexponential contribution to the DCE kinetics
becomes significant. The general expression for the DCE kinetics in the presence of oscillating or fluctuating
force is derived. With the use of this expression simple analytical formulas for the kinetics are obtained in the
limits of slowly and fast oscillating or fluctuating force.

PACS number~s!: 82.20.Db, 82.20.Mj, 61.20.Lc
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I. INTRODUCTION

Diffusion-controlled escaping~DCE! from a potential
well is the important stage of a number of chemical a
physical processes in liquids@1–3# and solids@3,4# which
determines kinetics of these processes. In principle, DCE
be considered as a particular type of activated rate proce
which, however, the final state is delocalized in the sp
outside the well. Majority of works cited in Refs.@2,3# dis-
cuss three-dimensional~3D! processes.

In reality, however, DCE is very important in 1D pro
cesses as well. The important example is photoelectric
rier generation in 1D polymer semiconductors@5#. A similar
problem of behavior of photogenerated electrons in 1D c
ductors is also discussed in Ref.@6#. Both these processes a
essentially controlled by DCE from the Coulomb potentia

Recently it has been found that 1D DCE plays the imp
tant role of kink-antikink nucleation in the sine-Gordo
chain, affecting the activation energy of the nucleation r
@7#. The kink-antikink interaction is known to be of the sha
of the short range potential well@8#, and the effect of this
well shows itself considerably in kink-antikink quasiequili
rium properties. The effect of the external force on nuc
ation ~i.e., on DCE! has also recently been discussed@9# but
only quasistatic properties~rates and yields! in the presence
of a static force have been considered.

It is clear that the external force strongly affects the DC
kinetics @1–3#. In general the theoretical description of th
effect is rather difficult. In what follows we consider th
simplest 1D DCE. To a first approximation 1D DCE in th
presence of force can be treated as a diffusive passing
the cusp-shaped barrier which implies the exponential D
kinetics. The quasistatic expression for rate of this proces
well known @10–14#, but it is applicable only for fairly sharp
barriers.

However, the kinetics of passing over the barrier becom
fairly sophisticated in the case of the barrier of tim
dependent~oscillating or fluctuating! height and/or shape
@15#. An active discussion of this problem is inspired by t
discovered ‘‘resonant activation’’ in passing over the a flu
tuating barrier@16#. Very nontrivial mathematical aspects o
PRE 621063-651X/2000/62~4!/4688~10!/$15.00
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the problem has attracted the attention of theor
@15,17,18#, though the problem is still far from its complet
solution.

It is also worth noting another problem closely related
that of the correct treatment of the time-dependent bar
mentioned above. The problem is in the correct descript
of DCE kinetics for relatively weak force that leads to a wi
enough barrier. In this limit the substantial deviation fro
simple exponential kinetics is expected even for the bar
independent of time. In particular, in the absence of fo
DCE kinetics is known to be strongly nonexponent
@19,20#. This nonexponential kinetics evidently persists
the presence of weak force, but at intermediate times~of
course at very long times it is exponential!. This effect to-
gether with that of the time-dependent barrier leads to
very complicated 1D DCE kinetics in general.

The kinetics of 1D DCE is analyzed in a number of a
ticles @19–21#. The exact expression for kinetics of DC
from highly localized well in the absence of force~the pa-
rameter under consideration was the time-dependent pop
tion of the potential well! was first obtained in Ref.@19#. It
was shown later that for localized and fairly deep wells t
exact DCE kinetics can be reproduced in the simple mode
two kinetically coupled states inside and outside the w
@20#. This two-state model~TSM! is valid in the limit of fast
equilibration between the well and close vicinity around t
well ~see below! @20#. TSM allows one to simplify the analy
sis of the problem significantly.

In this work within TSM we consider the kinetics of DC
from 1D potential well in the presence of external forc
Both cases of static and time-dependent forces are discus
A large variety of different types of the DCE kinetics a
found depending on the relation between the well depth
force strength.

II. FORMULATION OF THE PROBLEM

The process under study is diffusion-controlled escap
of particles from the 1D potential wellu(x) ~shown in Fig.
1! in the presence of a fairly weak external forceF(t) that
does not change the activation energy but significantly
fects the diffusive motion outside the well. Note that here
4688 ©2000 The American Physical Society
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ter all parameters of energy dimensionality will be expres
in kBT units, i.e., we will takekBT51. In this work we
consider forces of different signs and both symmetric a
asymmetric~with high barrier atx→2`) potential wells
@see Figs. 1~a!–1~c!#. The potential well is assumed to b
deep enough: the activation energyua52u(xb)@1. The
DCE kinetics is controlled by the distribution functionr(xut)
satisfying the Smoluchowski equation~SE!

ṙ5D¹@¹r1~¹u!r2F~ t !r#, ~2.1!

where¹5]/]x, D is the diffusion coefficient, andF(t) is
the external force which is specified below. The functi
r(x,t) ~2.1! satisfies the boundary conditionr(x→6`,t)
→0 and the initial conditionr0(x)5r(x,0)5d(x2xi) with
xi.xb corresponding to the creation of particles near
bottom of the well.

A. General comments

In general, Eq.~2.1! cannot be solved analytically. How
ever, at timest longer than the timet r of equilibration within
the well the solution can be found in a simple analytical fo
@19#. This time is defined ast r5a2/D, wherea is the char-
acteristic size of the well that can be estimated as the
tance between points at whichu(x)521. It is important to
note that in the considered limit of deep well the time d
main t.t r determines the most interesting specific featu
of the DCE kinetics whose characteristic time iste
't r exp(ua)@tr @20,21#. The solution is obtained by the ex
pansion of the Laplace transform r̃(xuE)
5*0

`dt exp(2Et)r(xut) in the small parameterz5AEt r

FIG. 1. The schematic picture of the potential wellu(x) in the
presence of the external forceF: ~a! symmetric well u(x), ~b!
asymmetric wellu(x) and repulsive force, and~c! asymmetric well
u(x) and attractive force.
d

d

e

s-

-
s

5aAE/D!1 @notice that the behavior ofr(xut) at t.t r is
determined by that ofr̃(xuE) just in the region ofE corre-
sponding to smallz].

To clarify the mathematical aspects of the rigoro
method and TSM it is worth adding some comments. T
rigorous method is based on the reduction of Eq.~2.1! to the
Schroedinger-type one

@~E/D1v !2¹2#s5D21eu/2r0 , ~2.2!

where s(x,E)5 r̃(x,E)exp@u(x)/2# and v(x)5 1
4 (du/dx)2

2 1
2 d2u/dx2, and the solution of this equation in the slo

collision limit @22# which is defined by the inequalityz
!1. Equation~2.2! describes the resonance scattering o
particle by the potentialv(x) of the shape of the well, sepa
rated from the continuum by the high barrier@20#. The sin-
gular points of the Green’s functionG(x,x8uE)5^xu@(E/D
1v)2¹2#21ux8& of Eq. ~2.2! @coinciding with those of the
Green’s function of Eq.~2.1!# are shown in Fig. 2. These ar
the poles atE,0 and the branching point atE50 @corre-
sponding toAE behavior ofG(x,x8uE) at smallE]. In the
limit of deep well the first pole~closest toE50) is well
separated from others:uE1u;te

21!uEj u;t r
21 ( j >2). The

poles atEj ( j >2) describe the population relaxation with
the well while the pole atE1 and the branching point~they
are encircled in Fig. 2! control the DCE kinetics att.t r . In
the lowest order inz!1 (;z) Ej poles do not influence the
kinetics. The effect of these poles, i.e., the effect of popu
tion relaxation in the well on DCE kinetics, is described
higher orders of expansions inz.

Analysis shows@21# that TSM absolutely correctly de
scribes the DCE kinetics obtained rigorously in the low
order inz!1 when only theE1 pole and the branching poin
are taken into account. In Ref.@21# this fact is demonstrated
and discussed in detail in the caseF50. From a physical
point of view this means that TSM correctly treats the p
cess of reencounters with the well accompanied by sub
quent quasistationary capture within and escaping from
well.

The presence of~time independent! F leads to the modi-
fication of the ‘‘potential’’ v(x) in Eq. ~2.2!: v(x)5vF(x)
5 1

4 (du/dx2F)22 1
2 d2u/dx2, i.e., in this case the DCE ki

netics is characterized by the additional ‘‘frequency’’ para
eterEF5DF2 @the effect of time dependentF(t) is analyzed
in Secs. IV and V#. Following step by step the analysis of th
rigorous method and TSM presented in Refs.@19–21# one
can easily come to the conclusion that in the limitEF

!Ej ( j 52,3, . . . ) ~or zF5aAEF /D5Fa!1) both of them
are again equivalent to each other in the lowest order iz
andzF . The effect of the forceF in this limit manifests only

FIG. 2. The singular points of the Green’s functionG(x,x8uE)
of Eq. ~2.2!. Encircled areE1-pole and the branching point atE
50 which mainly determine the kinetics of DCE from the de
well.
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4690 PRE 62A. I. SHUSHIN
in the modification of analytical properties ofG(x,x8uE) in
the region of theE1 pole and the branching point~this mani-
festation is analyzed below!. The conditionzF!1 means
also that the characteristic timetF5(DF2)21 of passing
over the barrier of the potentialu(x)2Fx satisfies the rela-
tion tF@t r . In addition, this condition implies the relativ
weakness of the external force which does not change
shape of the well.

In the limit zF ,z!1 both the rigorous method and TSM
predict that the specific features of stochastic motion outs
the well are represented in the Green’s functionG(x,x8uE)
by the termc f

21(x,E)dc f(x,E)/dxux5xb
, wherec f(x,E) is

the solution of Eq.~2.2! describing free motion in this regio
@19#. Thus in both approaches the only modification
G(x,x8uE) for FÞ0 as compared to that forF50 @19–21#
reduces to the replacement ofc f(x,E) by the solution de-
scribing the diffusion in the presence of forceF. Naturally
for zF ,z!1 these approaches predict the same expres
for the DCE kinetics.

The equivalence of the rigorous method~in the linear inz
and zF approximation! and TSM enables us to estimate t
accuracy of the TSM. It is determined by the correcti
terms which are proportional to the high powers ofz and
zF (;zm andzF

m with m>2) which can be estimated in th
rigorous method. They describe the interference between
population relaxation inside and outside the well.

In what follows we will use TSM for analysis the DC
kinetics. This model is chosen instead of the rigorous met
only for the sake of the simplicity of intermediate calcul
tions and brevity of presentation.

B. Two-state model

TSM treats DCE as a transition from the state within t
well, whose population isn(t), to the state outside the we
described by the distribution functionc(x,t). The kinetic
equations forn(t) andc(x,t) are written as

ṅ5K1c~0,t !2~K21wr !n, ~2.3a!

ċ5D¹@¹2F~ t !#c2~K1c2K2n!d~x!. ~2.3b!

The terms proportional toK6 describe the abovementione
kinetic coupling between the state within the well, located
x.xb50, and the state outside the well. The conside
limit t r /te!1 the transition ratesK6 satisfy the relations
@21#

K6→` and K1 /K25Ke51/Zw , ~2.4!

whereZw5*wdxe2u(x) is the partition function for the well.
Equations~2.3! should be solved with the initial conditio

n~0!51 and c~x,0!50. ~2.5!

As to the boundary conditions forc(x,t), it is different for
symmetric@Fig. 1~a!# and symmetric@Figs. 1~b!,1~c!# well:
for symmetric well these conditions are given byc(x→
6`)50, while for asymmetric one they are written a
]c/]x2Fcux5050 andc(x→`)50.

In Eqs. ~2.3! we also took into account the first orde
reaction in the well~with the ratewr) represented by the
he

e

f

on

he

d

t
d

term wrn in the first of Eqs.~2.3!. The reaction can be
treated as a diffusive passing over reactive barrier at sm
x,xb near the bottom of the well.

In the case of time-independent~static! forceF Eqs.~2.3!
can be solved by the Laplace transformation in time. So
tion leads to the following formula for the well populatio
n(t):

n~ t !5
1

2p i E2 i`10

i`10

dE
eEt

E1wr1KeV~E!
. ~2.6!

In this formula the functionV(e) is directly related to the
Green’s function of the operator which controls diffusio
outside the well

g~x,xi uE!5^xu@E2D~¹22F¹!#21uxi&: ~2.7!

V~E!51/g~0,0uE!. ~2.8!

In addition to the time dependence of the well populati
n(t) the steady state characteristics such as the total yiel
escapingYe and reactionYr512Ye are of certain interes
for analysis of the problem and possible applications. Th
can be easily represented in terms of the life time in the w

tw5E
0

`

dt n~ t !, ~2.9!

Ye512Yr512wrtw . ~2.10!

Formulas~2.9! and ~2.10! are applicable both for static an
time- dependent forces. In the case of staticF, however, the
simple expression fortw can be derived using Eq.~2.6!:

tw51/@wr1KeV~0!#. ~2.11!

Formulas ~2.6!–~2.8! show that for static forceF the
problem of calculating the DCE kineticsn(t) reduces to the
evaluation of the Green’s function~2.7! and subsequent cal
culation of the inverse Laplace transform~2.6!. The case of
force depending on time is much more complicated. It w
be analyzed in detail in Secs. IV and V.

III. STATIC EXTERNAL FORCE

Prior to discussion of the DCE kinetics we need to no
that in the case of asymmetric well the effect of the exter
force on kinetics is essentially different forF.0 @Fig. 1~b!#
and F,0 @Fig. 1~c!#. The repulsive force (F.0) enhances
the escape of particles from the well and subsequent di
sion apart from the well, whereas the attractive forceF
,0) prevents diffusion of particles to infinity giving rise t
the formation of the equilibrium state in the potentialu(x)
1uFux @see Fig. 1~c!#. Kinetics of depopulation of the wel
is, naturally, different in these two cases and in what follo
we will discuss them separately though the formal ma
ematical expressions forn(t) are close in both cases. W
start our discussion of the DCE kinetics with the simple
case of the absence of external force (F50) investigated
earlier in Ref.@20#.
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A. The absence of external force

For F50 one getsgs(x,xi uE)5(2kD)21e2kux2xi u and
ga(x,xi uE)5(2kD)21@e2kux2xi u1e2k(x1xi )#, where k(E)
5AE/D, for symmetric~s! and asymmetric~a! well, respec-
tively. Correspondingly, according to the definition~2.8!, for
symmetric and asymmetric wells

Vn~E!5Dpnk~E! ~n5s,a!, ~3.1!

whereps52, pa51, andk(E)5AE/D.
Substitution of the expression~3.1! into Eq.~2.6! leads to

the following formula for the DCE kineticsnn(t) (n5s,a)
@20#:

nn
0~ t !5

1

2p i E2 i`10

i`10 du exp~ut!

u1an
0Au11

5
z1

0 F~z1
0 At!2z2

0 F~z2
0 At!

z1
0 2z2

0
, ~3.2!

wheret5wrt, an
05pnKeAD/wr , z6

0 5 1
2 an

06 iA12 1
4 (an

0)2,

andF(z)5@12erf(z)#ez2
. The parametersz6

0 are the roots
of equationz22an

0z1150.
Specific features of the DCE kineticsnn

0(t) ~3.2! are ana-
lyzed in detail in Refs.@20,21#. In general this kinetics is
nonexponential and, in particular, at long timest@1/wr it is
of inverse power type:nn

0(t);1/t3/2. In the limit of small
an

0!1, however, more detailed analysis of the kinetics
possible.

The analysis shows@20,21# that at small timest5wrt
, ln(1/an

0) the kinetics is exponential,nn
0(t)5exp(2wrt),

while at large timest. ln(1/an
0) it is of inverse power type,

nn
0(t)5an

0/@2Ap(wrt)
3/2#. In the absence of reaction (wr

→0), however the kinetics is completely nonexponent
nn

0(t)5F(Ae1t), where e15DKe
2 . This formula also pre-

dicts inverse power type behavior ofnn
0(t) at large t but

different from that mentioned above:nn
0(t).1/Ape1t.

It is seen that even in the absence of the external forc
large variety of different types of the DCE kinetics occu
The effect of a force clearly leads to some additional int
esting specific features of this kinetics.

B. The presence of external force

1. General formulas

In the caseFÞ0 the Green’s functionsGn(x,xi uE) can
easily be obtained analytically both for symmetric (n5s)
and asymmetric (n5a) wells. Substitution of these function
into Eq. ~2.8! gives

Vs~E!52D¸~E! and Va~E!5D@ 1
2 F1¸~E!# ~3.3!

with ¸(E)5A(E1 1
4 DF2)/D. Thus the DCE kinetics

nn(t) (n5s,a) is represented as

nn~ t !5
1

2p i
e2e0tE

2 i`1e0

i`1e0 de exp~et!

e2Sn1anAe
, ~3.4!
s

l:

a
.
-

whereSn5sgn(wn) and

t5uwnut ~3.5!

is the dimensionless time in which the characteristic r
wn (n5s,a) is expressed in terms of the rate parameters
the model

wr , w05DF2/4, and we5DF/Zw : ~3.6!

ws5w02wr and wa5w02wr2we/2. ~3.7!

In addition, in formula~3.4! there are two dimensionles
parameters

e05w0 /uwnu and an5pn~we/2Aw0uwnu! ~3.8!

~with ps52 andpa51) that essentially determine the sp
cific features ofnn(t).

The behavior ofnn(t) substantially depends on the sign
wn . The fact is that in the case of positivewn there exists the
pole of the integrand in Eq.~3.4! in the interval 0<e<e0 ~at
e5Azp, wherezp is the positive root of equationz21anz
2150), which gives rise to the contribution tonn exponen-
tially depending on time. For negativewn , however, this
pole is absent and, the DCE kinetics is nonexponentia
general.

After some algebraic manipulations the expression~3.4!
can be represented in the following form:

nn~ t !5n0e2ent1e2e0tI n~an ,t!, ~3.9!

wheret5uwnut,

en5e02~A11 1
4 an

22 1
2 an!2, ~3.10!

n05S 12
an

A41an
2D u~wn!, ~3.11!

and

I n~a,t!5
2a

p E
0

`

dv
v2 exp~2v2t!

~v21Sn!21a2v2

5
z1F~z1At!2z2F~z2At!

z11Snz2
. ~3.12!

In Eqs. ~3.9!–~3.12! u(w) is the Heaviside step function

Sn5sgn(wn), z15ASn1 1
4 a21 1

2 a, z25Sn(ASn1 1
4 a2

2 1
2 a), and

F~z!5@12erf~z!#ez2
. ~3.13!

In its general structure the expression~3.12! is similar to
formula ~3.2!, however, the presence of the additional te
Sn5sgn(wn) in Eq. ~3.12! leads to a very large variety o
different analytical properties of the DCE kinetics in the ca
FÞ0 discussed below.
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2. Analysis of different limits

Prior to the discussion of various limits it is worth makin
some general comments. Formula~3.9! predicts thatnn(0)
5n01I n(an ,0)51 in accordance with the initial conditio
~2.5!. The first termn0 is non-zero only forwn.0. This
means that atwn.0 the analytical properties of the functio
I n(a,t) strongly differ from those atwn,0. In particular,
for wn.0 I n(a,0) depends ona and smaller than 1
whereas for wn,0 I n(a,0)51. In addition, at wn

.0 I n(a,t) is the nonexponential function oft for all t,
while at wn,0 it is exponential att,tc5 ln(1/a) and non-
exponential att.tc in agreement with results of Sec. III A

a. Strong repulsive external force F.0
The limit of strong repulsive forceF.0 is defined by

wn.0 and w0@we ,wr . ~3.14!

In this limit the first exponential term in formula~3.9! is
dominating:n0.1, and the ratewd of the ~exponential! well
depopulation is a sum of the reaction and DCE rates

wd5enwn.wr1we ~3.15!

both for symmetric and asymmetric wells. The express
for DCE ratewe ~3.6!, naturally, coincides with the rate o
diffusive passing over the cusp-shaped barrier when the f
in the state of reagents is much larger than that in the sta
products@3,14#. The expression~3.15! is actually the particu-
lar case of the general formula for the depopulation ratewd
valid in the limit sharp barrier outside the well:

wd.wr1KeVn~0! ~3.16!

which can easily be seen from the expression~2.6!.
b. Repulsive force(F.0) of intermediate strength
This case corresponds to

wn.0 and w0;we ,wr . ~3.17!

~1! In general, at these conditions both terms in form
~3.9! are of comparable absolute value. However, sinceen

,w0 and I n(a,t) is the decreasing function oft the long
time asymptotic behavior ofnn(t) is completely determined
by the first exponential term

n~ t !'n0e2enuwnut for t@we
21 ,wr

21 . ~3.18!

Compared to the previous case~a!, however, the correspond
ing pre-exponential factorn0, given by Eq.~3.11!, is smaller
than 1, and the DCE rateenuwnu @see Eq.~3.10!# is lower
thanwe . The decrease of the absolute value of the DCE r
enuwnu with the decrease of the force strength results e
dently from the increase of the number of returning trajec
ries as the slopeF of the cusp-shaped barrier near the w
becomes less steep.

~2! In the special case of relatively weak force, whenwn

.0 butwn!we , the pre-exponential factorn0 is very small:
n0!1, anden.e0. In this limit the initial stage of the DCE
kinetics is described by the second non-exponential t
;I n(an ,t) of the expression~3.9!.

In the casewn.0 but wn!we the DCE kinetics has the
following specific features.
n

ce
of

a

te
i-
-
l

m

~a! For wnÞ0 at short times no simple approximations f
the nonexponential functionI n(a,t) occur, and one needs t
use the general expression~3.12!. At long timest, however,
it is of inverse power typeI n(a,t).a/(2Apt3/2), so that

nn~ t !;t23/2exp~2w0t !. ~3.19!

~b! At wn→0 the expression fornn(t) simplifies since in
this case n050 and I n(a,t)5F(aAt)5@1
2erf(aAt)#ea2t. Thus for very smallwn

nn~ t !5@12erf~gnAw0t !#exp@2~12gn
2!w0t#,

~3.20!

where gn5anAwn /w05pn(we/2w0). Formula ~3.20! pre-
dicts the following long time behavior ofnn(t): nn(t)
;t21/2exp@2(12gn

2)w0t#.
c. Weak repulsive external force F.0
In the case of weak force, when

wn,0, ~3.21!

the first exponential term in Eq.~3.9! is absent and the DCE
kinetics is determined by the second term;I n(an ,t). It is
easily seen that atwn,0 the behavior ofI n(a,t) is similar
to that ofnn

0(t) with wrÞ0 @see Eq.~3.2!# which describes
the DCE kinetics in the absence of external force. In parti
lar, in the limit an!1 there are two well distinguishabl
stages of the DCE kinetics. At relatively short timest,tc
5uwnu21 ln(1/an) kinetics is exponential:

nn~ t !.exp@2~w02wn!t#5exp@2~wr1we/2!t#,
~3.22!

while at longer timest.tc kinetics is nonexponential:

nn~ t !.~an/2Ap!~ uwnut !23/2exp~2w0t !. ~3.23!

Note thatwn,0 means thatwr1we/2.w0 and the decrease
of nn(t) becomes slower as timet changes fromt,tc to t
.tc . It is worth noting also that according to Eq.~3.22! at
t,tc the DCE rate equalswe/2 rather thanwe as in the case
of strong force@see Eq.~3.16!#. Naturally, in the limit F
→0 the formulas~3.22! and ~3.23! reduce to those corre
sponding to the case of the absence of external force~see
Sec. III A!.

d. Attractive external force F,0
For F,0 the DCE kineticsnn is also described by the

general expression~3.9!. It is clear from this expression tha
the change ofF sign does not change the DCE kinetics f
symmetric well. In the case of asymmetric well the DC
kinetics for F,0 strongly differs from that forF.0. This
strong dependence results from the fact that in the expres
~3.7! for wa the sign of the ratewe depends on the sign ofF
and forF,0 the ratewe,0. The negative sign ofwe leads
to some important specific features of the kineticsna(t).

~1! In the strong external field limit, whenuweu!w0, the
depopulation rate

ea5wr , ~3.24!

i.e., the DCE rate is zero. This result is quite natural.
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~2! In the absence of reaction (wr50) the first term in the
expression forna(t) ~3.9! is always independent of time, i.e
the rateea50, no matter how strong the external force
The absolute value of this term

n054w0 /~ uweu14w0!5uFuZw /~11uFuZw! ~3.25!

determines the statistical weight of the well in the equil
rium state in the potentialu(x)1uFux.

e. Escaping yield
The escaping and reaction yields defined by Eq.~2.10! are

given by the universal formula

Ye
s512Yr

s5
we

wr1we
, ~3.26a!

Ye
a512Yr

a5
we

wr1~we1uweu!/2
, ~3.26b!

and do not provide any information on details of the DC
kinetics discussed above. Moreover these relations can
misinterpreted since they coincide with those predicted in
simple exponential model for escaping kinetics which, in
ality, is only observed in the limit of strong force~See Eqs.
~3.15! and ~3.24!#.

IV. OSCILLATING EXTERNAL FORCE

In general the analysis of the DCE kinetics in the prese
of time-dependent force is very complicated. For harmo
cally oscillating force, however, the problem can be redu
to that for static force and thus solved by the method de
oped above.

A. General expressions

In the case of harmonically oscillating forceF(t)
5F0 cos(v0t) one can find the functionsn(t) and c(x,t),
satisfying Eqs.~2.3!, in terms of expansion in Floquet state
@24#, which are usually applied in analyzing the dynamics
periodically driven systems@25#

n~ t !5 (
m52`

` E
0

v0
dv Nm~v!e2 i (v1mv0)t, ~4.1!

c~x,t !5 (
m52`

` E
0

v0
dvCm~x,v!e2 i (v1mv0)t. ~4.2!

Substituting these function in Eqs.~2.3! one gets the matrix
equations for the vectors

N~v!5$Nm~v!% and C~x,v!5$Cm~x,v!%: ~4.3!

i V̂N5K1C~0!2~K21wr !N1Ni , ~4.4a!

i V̂C5D¹~¹2F0 f̂ !C2~K1C2K2N!d~x!, ~4.4b!

in which C(0)5C(x50,v), Ni5$1% is the vector of initial
population@see Eq.~2.5!# represented in the vector space
N, and the matricesV̂ and f̂ are given by
.

-

be
e
-

e
i-
d
l-

f

V jk5~v1 j v0!d jk and f jk5 1
2 ~d j 11,k1d j 21,k!.

~4.5!

Equations~4.4! should be solved with the boundary cond
tions C(x→6`)50 andC(x→`)50; ]C/]x2F0 f̂ Cux50
50 for symmetric and asymmetric well, respectively.

Solution of these equations in the limit~2.4! yields

N~v!5Ĝ~v!Ni , ~4.6!

where

Ĝ~v!5@ i V̂~v!1wr1KeV̂~v!#21. ~4.7!

In the expression forĜ(v)

V̂~v!51/ĝ~0,0uv! ~4.8!

with ĝ(x,xi uv)5^xu@ i V̂(v)2D(¹22F0 f̂ ¹)#21uxi&.
The Green’s functionĝ(x,xi uv) and thus the matrixV̂(v)

can be calculated analytically by the methods developed
Ref. @23#:

V̂s~v!52D¸̂~v! and V̂a~v!5D@ 1
2 F0 f̂ 1¸̂~v!#

~4.9!

with ¸̂(v)5A@ i V̂(v)1 1
4 DF0

2 f̂ 2#/D, for symmetric~s! and
asymmetric~a! wells

The final formulas~4.8! and ~4.9! are suitable for the
analysis of the DCE kineticsnn(t). It is obtained by substi-
tution of the vectorNn(v) into the relation~4.1!.

B. Limiting cases

In general, Eqs.~4.1!–~4.9! enable one to calculate th
DCE kineticsnn(t) only numerically. However, the limits o
slow and fast force oscillations can easily be analyzed a
lytically.

1. Slowly oscillating force

The limit of slow oscillations ofF(t) is defined by the
inequality

we ,DF0
2@v0 . ~4.10!

In this limit the DCE kinetics can most easily be analyzed
strong external forcesF0@1/Zw @see the second of inequal
ties ~3.14!#. In this case

Ĝs~v!5@ i V̂1wr1weu f̂ u#21, ~4.11a!

Ĝa~v!5@ i V̂1wr1
1
2 we~ f̂ 1u f̂ u!#21. ~4.11b!

In the expressions~4.11! we5DF0 /Zw and u f̂ u5A f̂ 2.
It is easily seen that the kineticsnn(t) obtained using the

matrix expressions~4.11! can be equivalently calculated b
solution of simple kinetic equations valid in the strong for
limit:

ṅs52@wr1weucos~v0t !u#ns ~4.12a!
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ṅa52@wr1weu„cos~v0t !…#na , ~4.12b!

whereu(y) is the step function. The solutions of these equ
tions can be represented as follows:

nn~ t !5exp$2@wrt1fn~ t !1cn~ t !#% ~n5s,a!.
~4.13!

Herefs,a(t) are the bounded functions

fs~ t !5~we /v0!sin~v0t !$2u@cos~v0t !#21%
~4.14a!

fa~ t !5~we /v0!sin~v0t !u@cos~v0t !#. ~4.14b!

The unbounded functions

cs~ t !52ca~ t !5~2we /v0!@w#, ~4.15!

where @x#5x2$x% is the integral part of x and w
5(v0t/p)11/2, determine the decrease ofnn(t): at t
@1/v0 the average well depopulation rate is given by

w̄d
s5wr12we /p and w̄d

a5wr1we /p ~4.16!

for symmetric and asymmetric well, respectively.

2. Fast oscillating force

In the limit of fast oscillating force, when

we ,DF0
2!v0 , ~4.17!

in Eqs.~4.4! coupling between ‘‘eigenstates’’u j & of the ma-
trix V̂, caused by the nondiagonal matrixF0 f̂ , can be ne-
glected. In this case the main nonoscillating part of the D
kinetics is determined by the inverse Fourier transformat
of the matrix element

Ĝn00
~v!5@ iv1wr1pnDKe¸0~v!#21, ~4.18!

where pn (n5s,a) is defined in Eq. ~3.8! and ¸0(v)

5A@ iv1 1
4 DF0

2 f̂ 2
00#/D, i.e., ¸0(v)5A( iv1 1

8 DF0
2)/D. In

derivation of formula for¸0(v) we took into account tha
f̂ j j

2 51/2.
After the evident change of integration path in the integ

of the inverse Fourier transformation we arrive at formu
~3.4! for the DCE kinetics in the presence of static for
(1/A2)F0 @which is, actually,F(t) averaged over the oscil
lation periodF05A^F2(t)&], i.e., with the following param-
eters:

w05 1
8 DF0

2 , we5
DF0

A2Zw

, ws5wn5w02wr .

~4.19!

The specific features of the kinetics~3.4! have been dis-
cussed in detail in Sec. III. Here we only note that, accord
to formulas ~4.18! and ~4.19!, in the limit ~4.17! both for
symmetric and asymmetric wells the DCE kinetics in t
presence of oscillating force reduces to that of Eq.~3.4! cor-
responding to the symmetric well and static average fo
but with different parametersa: as52aa . In other words,
-

E
n

l

g

e,

the fast oscillating force results in a similar effect on DC
for both types of wells, but with the DCE rate for symmetr
well about two times larger than for the similar asymmet
one ~with the sameZw).

V. FLUCTUATING EXTERNAL FORCE

We will analyze the effect of fluctuating external force
the Markovian approximation@26# which enable one to sim
plify the problem reducing it to solving the system of diffe
ential equations usually called the stochastic Liouville eq
tion @27#. Nevertheless, most of results obtained in th
section are fairly general and independent of the applied
proximation.

A. Markovian approximation

In the Markovian approximation for force fluctuations th
two coupled equations~2.3! are replaced by two couple
systems of equations@similar to Eqs.~4.4!# for the vectors
n(t)5$nj (t)% and c(x,t)5$cj (x,t)% whose components de
scribe the evolution of the system in the statesu j & corre-
sponding to the different values of the force. In what follow
for the sake of convenience we will also use bra and
notations for the vectorsn(t)[un(t)& and c(x,t)[uc(x,t)&.
These systems of equations~called the stochastic Liouville
equation! are written as

ṅ5K1c~0!2~K21wr2Ŵf !n, ~5.1a!

ċ5D¹~¹2F̂ !c2Ŵfc2~K1c2K2n!d~x!. ~5.1b!

Here F̂ is the matrix of forces diagonal in the basisu j &:
F j j 85F jd j j 8 , and the matrixŴf describes the transition
between statesu j & resulting in the fluctuations of force. Th
solution of Eqs.~5.1! satisfies the boundary conditionsc(x
→6`)50 and c(x→`)50; ]c/]x2F̂cux5050 for sym-
metric and asymmetric well, respectively.

Equations~5.1! should be solved with the initial condition

uc~x,0!&50 and un~0!&5u0&, ~5.2!

whereu0& is the equilibrium eigenvector of the matrixŴf ,
i.e., Ŵf u0&5^0uŴf50. The vectorsu0& and^0u can be rep-
resented in terms of expansion in the basesu j & and ^ j u, re-
spectively:

u0&5(
j

p̄ j u j & and^0u5(
j

^ j u, ~5.3!

where p̄ j5^ j u0& is the equilibrium probability to find the
system in the stateu j &. Note that, in general,̂0uÞu0&1 be-
cause the matrixŴf is non-Hermitian. For convenience o
our further discussion let us also introduce the project
operator on the equilibrium stateu0&:

P̂05u0&^0u. ~5.4!
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The DCE kineticsnn(t)5^0unn(t)& for symmetric (n
5s) and asymmetric (n5a) wells can be obtained by solu
tion of Eqs. ~5.1! by means of the Laplace transformatio
which gives

nn~ t !5^0unn~ t !&5
1

2p i E2 i`10

i`10

d« e«t^0uĜn~«!u0&

~n5s,a!, ~5.5!

where

Ĝn~«!5@«1wr1Ŵf1KeV̂n~«!#21, ~5.6!

with

V̂n~«!51/ĝn~0,0u«! ~5.7!

and ĝn(x,xi u«)5^xu@«1Ŵf2D(¹22F̂¹)#21uxi&. The ma-
trix V̂n(«) can be obtained analytically by the method pr
posed in Ref.@23# as in the case of oscillating force

V̂s~«!52D¸̂~«! and V̂a~«!5D@ 1
2 DF̂1¸̂~«!# ~5.8!

in which ¸̂(v)5A(«1Ŵf1
1
4 DF̂2)/D.

The formulas~5.4!–~5.8! enable one to analyze the sp
cific features of the DCE kinetics in some limits quite easi

B. Analysis of limits

1. Slowly fluctuating force

The slow fluctuation limit is defined by

we ,DF̄2@iWf i , ~5.9!

whereF̄25( j p̄ jF j
2 is the average square of the force. Sim

lar to the case of oscillating force here we will assume t

the external force is strong enough:AF̄2@1/Zw , so that the
DCE kinetics is described by the fluctuating DCE rate.
this limit

V̂s~«!5uŴeu/Ke and V̂a~«!5 1
2 ~Ŵe1uŴeu!/Ke

~5.10!

with Ŵe5DF̂/Zw and uŴeu5AŴe
2. The expressions fo

Ĝn(«) with V̂n ~5.10! correspond to the simple first orde
DCE kinetics but with fluctuating DCE rateWe .

In general, the calculation of the DCE kinetics in the slo
fluctuation limits requires some matrix operations. Here
will restrict ourselves to the discussion of limiting situatio

a. Quasistatic fluctuations

In the quasistatic limit, wheniŴei@iŴf i , one can ne-
glect the fluctuation matrixŴf . In this case the inverse
Laplace transformation~5.5! yields for nn(t):

nn~ t !5^0uexp~2Ŵe
nt !u0&5(

j
p̄ j exp@2We

n~ j !t#,

~5.11!
-

.

t

e

where We
s( j )5DuF j u/Zw and We

a( j )5DF ju(F j )/Zw . It is
clear that in general the quasistatic DCE kinetics predic
by Eq. ~5.11! is strongly nonexponential.

b. Relatively fast fluctuations

This limit is defined by inequalityiŴei!iŴf i . In this
case Ĝs.@«1wr1uWeu#21 and Ĝa.@«1wr1

1
2 (W̄e

1uWeu)u0&] 21, and therefore for both types of wells: sym
metric ~s! and asymmetric~a!, the DCE kinetics is exponen
tial:

ns~ t !.exp@2~wr1uWeu!t#, ~5.12a!

na~ t !.exp@2wrt2
1
2 ~W̄e1uWeu!t#. ~5.12b!

Hereafter we use the notationĀ for the average of matrix
elements of any matrixÂ

Ā5^0uÂu0&5(
j

p̄ jAj ~5.13!

in which the probabilitiesp̄ j are defined in Eq.~5.3!.

2. Fast fluctuating force

In the opposite limit of fast force fluctuations, when

we ,DF̄2!iWf i , ~5.14!

the fluctuations are averaged out. This leads to the str
simplification of formula forĜn (n5s,a):

Ĝn~«!5@«1wr12pnDKe¸0~«!#21P̂0 , ~5.15!

whereps52pa52 and¸0(«)5A(«1 1
4 DF̄2)/D ~remember

that F̄25( j p̄ jF j
2).

The expression~5.15! shows that, similar to the case o
fast oscillating force~see Sec. IV B 2!, in the limit of fast
force fluctuations the DCE kinetics reduces to that for
~average! static force and symmetric well no matter wheth
the original wellu(x) is symmetric or asymmetric. The onl
difference between symmetric and asymmetric wells is in
amplitude factorps,a of the term;¸ in formula for Gs,a .
This means that in the fast fluctuation limit the specific fe
tures of the DCE kinetics are the same as those for st
force ~Sec. III!.

3. Two-state model of force fluctuations

Here we will analyze the general expressions obtain
above in the simple two-state model of Markovian fluctu
tions of the forceF. In this model the matrixŴf is given by

Ŵf5wf~Ê2u0&^0u!5wf~Ê2 P̂0!, ~5.16!

whereÊ is the unity matrix,̂ 0u5(1,1), andu0&5 1
2 (1,1)Á.

This definition means that the probabilitiesp̄15 p̄251/2.
The force matrixF̂ is taken in the simplest form

F j j 85~21! j 21F0d j j 8 , ~5.17!
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so thatF̄5^0uF̂u0&50. It is worth emphasizing the impor
tant property of the matrixF̂ ~5.17!: F̂25F0

2Ê.
In the model~5.16!, ~5.17!

¸̂~«!5qf~«!Ê1@q0~«!2qf~«!# P̂0 , ~5.18!

whereqf5A(«1wf1
1
4 DF0

2)/D andq05A(«1 1
4 DF0

2)/D.
Substitution of this relation into Eq.~5.6! gives after some
matrix manipulations

^0uĜsu0&51/Xs , ~5.19a!

^0uĜau0&51/@Xa1 1
4 ~we

2/Xf !#. ~5.19b!

Herewe5DF0 /Zw and

Xn~«!5«1wr1
1
2 pnDKeq0~«!, ~5.20!

Xf~«!5«1wr1wf1
1
2 DKeqf~«! ~5.21!

~remember thatps52 andpa51).
In general, formula~5.19! for ^0uĜn(«)u0& is rather com-

plicated to apply for calculating the DCE kinetics with E
~5.5!, but it is quite suitable for analysis of some particu
cases.

~a! First, note that the two-state model~5.16! predicts no
effect of the force fluctuations on DCE from the symmet
well, i.e., the DCE kinetics in this case is the same both
fluctuating and for static forces. It is easily seen from a
proximate limiting expressions~5.11! and ~5.12!, as well as
from general formula~5.19! (Gs is independent ofXf).

~b! For asymmetric wells the strong effect of force flu
tuations on kinetics is predicted by formula~5.19!. The cor-
responding inverse Laplace transform of^0uĜa(«)u0& can
hardly be obtained analytically in general. In the case
relatively fast fluctuations, however, whenwe5DF0 /Zw
!wf , one can neglect«-dependence ofXf taking

Xf.Xf
05wr1wf1

1
2 DKeqf~0!. ~5.22!

In this limit the fluctuating force leads to the additional DC
with the ratedwe5 1

4 (we
2/Xf

0), and the total DCE kinetics
na(t) reduces to that for static force but with renormaliz
reaction rate as it is seen from Eqs.~5.5!, ~5.19!, and~3.4!.

~c! The two-state model~5.16! enables one to obtain
simple expressions for the DCE yieldYe @Eq. ~2.10!# in the
presence of fluctuating force. Remind that in the case
symmetric well the two-state model predicts no effect
fluctuations and the DEC yieldYe

s is the same as for the
static repulsive forceF5F0. For the asymmetric well

Ye
a512Yr

a512wr@wr1
1
2 we1 1

4 ~we
2/Xf

0!#21.
~5.23!

This formula is valid for any values of parameters of t
model. The effect of force fluctuations on the DCE yield
described by the terms;we and;we

2 in the right hand side
of Eq. ~5.23!.
r

r
-

f

f
f

VI. CONCLUSION

In this work we have thoroughly analyzed the speci
features of the kinetics of diffusion-controlled escapi
~DCE! from the 1D potential well in the presence of tim
independent~static!, oscillating or fluctuating external force
The force is assumed to be relatively weak: it significan
affects diffusion outside the well, but does not change
activation energy. The cases of symmetric and asymme
potential well are considered~see Fig. 1!. Some general con
clusions of this work concerning specific features of the D
kinetics in the fast and slow oscillation or fluctuation limi
are similar to those obtained in Refs.@17,18# ~mainly corre-
sponding to the case of strong field!. In our analysis specia
attention has been paid to the weak field limit in which so
peculiarities of the kinetics are found.

A large variety of types of the DCE kineticsnn(t) for
symmetric (n5s) and asymmetric (n5a) potential wells
has been found for static fields. The important parameter
controls the change of kinetics is the ratioj5w0 /we of the
escaping time 1/we5Zw /(DF) and the characteristic time
1/w051/(DF2) of diffusion over the cusp-shaped barrier
the potentialu(x)2Fx. For j!1, i.e., for strong fields, the
DCE kinetics is described by the first order equations~4.12!.
In the opposite limit j@1 ~weak fields! the kinetics is
strongly nonexponential similar to the case of the absenc
force @20,21#.

The effect of force oscillations and fluctuations on t
DCE kinetics is also analyzed. Simple analytical expressi
for the functionsns,a(t) are obtained in the limits of slow
and fast oscillations and fluctuations of force. In both lim
the DCE kinetics is shown to be nonexponential, in gene
In particular, in the fast oscillations/fluctuation limit the k
netics of DCE from symmetric and asymmetric wells r
duces to that corresponding to the case of static force
symmetric well.

The expressions for the DCE yieldYe are derived in the
cases of static and fluctuating external force. The yield
pears to be insensitive to the details of the DCE kinetics
the presence of static force. In the case of fluctuating forc
gives interesting information about the dependence of
DCE kinetics on fluctuation correlation time.

The DCE yieldYe in the presence of oscillating field ca
be represented in the form of matrix expressionYe

5Ni
ÁĜ(v50)Ni , whereNi and Ĝ(v) are defined in Sec

IV A. The yield Ye gives some important information abou
the effect of oscillating force on the DCE kinetics. Unfort
nately, in general, the evaluation ofYe is possible only nu-
merically.

In this article we restricted ourselves mainly to the ge
eral analysis of the developed method and consideratio
the most interesting limits. This method, however, offe
some interesting possibilities of further investigations of t
specific features of DCE kinetics.

~1! The results of this work are very important for d
scription of the kinetic properties of kink-antikink ensembl
@7,9#. So far the effect of geminate DCE kinetics analyzed
this article on the kinetic characteristics of multiparticle sy
tems such as the correlation functions has not been stu
rigorously enough although this effect is expected to
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fairly strong in the limit of strong interaction between pa
ticles.

~2! Here we discussed only the influence of a weak fo
which does not change the escaping activation energyub .
Some effects of a stronger force, however, can also be in
preted within the approach developed. In particular, one
easily take into account the oscillations or fluctuations of
activation energy if they are not accompanied by the cha
of the shape of the potential at the dissociation threshold
this case TSM is still applicable though one should assu
that the rate of capture into the wellK1 @see Eq.~2.4!# is
scalar value~i.e., K1 is independent of time! while K̂2

5K1Ẑw is the matrix in one of spaces described in Secs.
and IV ~representing the time dependentK2). This approach
is very close to that considered in some other models wh
are discussed in connection with various problems of
theory of stochastic resonance@15#

~3! The method developed can also be applied to
model of two kinetically coupled wells@21# which is equiva-
lent to that of diffusive passing over the square barrier se
e,

s.
e

r-
n

e
e

In
e

h
e

e

a-

rating two narrow wells~see also Ref.@18#!. Within this
model one can describe the effect of fluctuating activat
energy with the use of the abovementioned modification
the rate constantK2 .

~4! It is of special interest to analyze the effects of no
adiabaticity on the stochastic processes. This problem i
certain importance for the theory of stochastic resonan
@28#. The proposed method makes it possible to get so
new insight into the problem. For example, it enables one
treat it in the simple model of coupled narrow wells.

The work on some of the problems described in this lis
currently in progress. The results of this work will be pr
sented later in separate publications.
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